Fourier Series for the Tangent Polynomials, Tangent–Bernoulli and Tangent–Genocchi Polynomials of Higher Order

نویسندگان

چکیده

In this paper, the Fourier series expansion of Tangent polynomials higher order is derived using Cauchy residue theorem. Moreover, some variations higher-order are defined by mixing concept with that Bernoulli and Genocchi polynomials, Tangent–Bernoulli Tangent–Genocchi polynomials. Furthermore, expansions these also

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Series of Orthogonal Polynomials

It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...

متن کامل

-Genocchi Polynomials and Numbers of Higher Order

Copyright q 2010 Lee-Chae Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We investigate several arithmetic properties of h, q-Genocchi polynomials and numbers of higher order.

متن کامل

Some Identities on the q-Tangent Polynomials and Bernstein Polynomials

In this paper, we investigate some properties for the q-tangent numbers and polynomials. By using these properties, we give some interesting identities on the q-tangent polynomials and Bernstein polynomials. Throughout this paper, let p be a fixed odd prime number. The symbol, Zp, Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic ...

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

Higher-order Changhee Numbers and Polynomials

In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the fermionic p-adic integral on Zp and give some relations between higher-order Changhee polynomials and special polynomials. 366 Dae San Kim, Taekyun Kim, Jong Jin Seo and Sang-Hun Lee

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11030086